36 research outputs found

    A Convex Framework for Optimal Investment on Disease Awareness in Social Networks

    Full text link
    We consider the problem of controlling the propagation of an epidemic outbreak in an arbitrary network of contacts by investing on disease awareness throughout the network. We model the effect of agent awareness on the dynamics of an epidemic using the SAIS epidemic model, an extension of the SIS epidemic model that includes a state of "awareness". This model allows to derive a condition to control the spread of an epidemic outbreak in terms of the eigenvalues of a matrix that depends on the network structure and the parameters of the model. We study the problem of finding the cost-optimal investment on disease awareness throughout the network when the cost function presents some realistic properties. We propose a convex framework to find cost-optimal allocation of resources. We validate our results with numerical simulations in a real online social network.Comment: IEEE GlobalSIP Symposium on Network Theor

    Effect of Coupling on the Epidemic Threshold in Interconnected Complex Networks: A Spectral Analysis

    Full text link
    In epidemic modeling, the term infection strength indicates the ratio of infection rate and cure rate. If the infection strength is higher than a certain threshold -- which we define as the epidemic threshold - then the epidemic spreads through the population and persists in the long run. For a single generic graph representing the contact network of the population under consideration, the epidemic threshold turns out to be equal to the inverse of the spectral radius of the contact graph. However, in a real world scenario it is not possible to isolate a population completely: there is always some interconnection with another network, which partially overlaps with the contact network. Results for epidemic threshold in interconnected networks are limited to homogeneous mixing populations and degree distribution arguments. In this paper, we adopt a spectral approach. We show how the epidemic threshold in a given network changes as a result of being coupled with another network with fixed infection strength. In our model, the contact network and the interconnections are generic. Using bifurcation theory and algebraic graph theory, we rigorously derive the epidemic threshold in interconnected networks. These results have implications for the broad field of epidemic modeling and control. Our analytical results are supported by numerical simulations.Comment: 7 page

    Spreading processes over multilayer and interconnected networks

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringCaterina ScoglioSociety increasingly depends on networks for almost every aspect of daily life. Over the past decade, network science has flourished tremendously in understanding, designing, and utilizing networks. Particularly, network science has shed light on the role of the underlying network topology on the dynamic behavior of complex systems, including cascading failure in power-grids, financial contagions in trade market, synchronization, spread of social opinion and trends, product adoption and market penetration, infectious disease pandemics, outbreaks of computer worms, and gene mutations in biological networks. In the last decade, most studies on complex networks have been confined to a single, often homogeneous network. An extremely challenging aspect of studying these complex systems is that the underlying networks are often heterogeneous, composite, and interdependent with other networks. This challenging aspect has very recently introduced a new class of networks in network science, which we refer to as multilayer and interconnected networks. Multilayer networks are an abstract representation of interconnection among nodes representing individuals or agents, where the interconnection has a multiple nature. For example, while a disease can propagate among individuals through a physical contact network, information can propagate among the same individuals through an online information-dissemination network. Another example is viral information dissemination among users of online social networks; one might disseminate information received from a Facebook contact to his or her followers on Twitter. Interconnected networks are abstract representations where two or more simple networks, possibly with different dynamics over them, are interconnected to each other. For example, in zoonotic diseases, a virus can move from the network of animals, with some transmission dynamics, to a human network, with possibly very different dynamics. As communication systems are evolving more and more toward integration with computing, sensing, and control systems, the theory of multilayer and interconnected networks seems to be crucial to successful communication systems development in cyber-physical infrastructures. Among the most relevant dynamics over networks is epidemic spreading. Epidemic spreading dynamics over simple networks exhibit a clear example where interaction between non-complex dynamics at node level and the topology leads to a complex emergent behavior. A substantial line of research during the past decade has been devoted to capturing the role of the network on spreading dynamics, and mathematical tools such as spectral graph theory have been greatly useful for this goal. For example, when the network is a simple graph, the dominant eigenvalue and eigenvector of the adjacency matrix have been proven to be key elements determining spreading dynamics features, including epidemic threshold, centrality of nodes, localization of spreading sites, and behavior of the epidemic model close to the threshold. More generally, for many other dynamics over a single network, dependency of dynamics on spectral properties of the adjacency matrix, Laplacian matrix, or some other graph-related matrix, is well-studied and rigorously established, and practical applications have been successfully derived. In contrast, limited established results exist for dynamics on multilayer and interconnected networks. Yet, an understanding of spreading processes over these networks is very important to several realistic phenomena in modern integrated and composite systems, including cascading failure in power grids, financial contagions in trade market, synchronization, spread of social opinion and trends, product adoption and market penetration, infectious disease pandemics, and outbreak in computer worms. This dissertation focuses on spreading processes on multilayer and interconnected networks, organized in three parts. The first part develops a general framework for modeling epidemic spreading in interconnected and multilayer networks. The second part solves two fundamental problems: introducing the concept of an epidemic threshold curve in interconnected networks, and coexistence phenomena in competitive spreading over multilayer networks. The third part of this dissertation develops an epidemic model incorporating human behavior, where multi-layer network formulation enables modeling and analysis of important features of human social networks, such as an information-dissemination network, as well as contact adaptation. Finally, I conclude with some open research directions in the topic of spreading processes over multilayer and interconnected networks, based on the resulting developments of this dissertation

    Exact Coupling Threshold for Structural Transition in Interconnected Networks

    Get PDF
    Interconnected networks are mathematical representation of systems where two or more simple networks are coupled to each other. Depending on the coupling weight between the two components, the interconnected network can function in two regimes: one where the two networks are structurally distinguishable, and one where they are not. The coupling threshold--denoting this structural transition--is one of the most crucial concepts in interconnected networks. Yet, current information about the coupling threshold is limited. This letter presents an analytical expression for the exact value of the coupling threshold and outlines network interrelation implications
    corecore